MCSP Digital Health Showcase

December 12, 2018
Digital Health at MCSP

Steve Ollis, Senior Digital Health Advisor
December 12, 2018
Agenda

• Digital Health background
• Digital Health at MCSP
• Global Goods supported
What is Digital Health?

• Digital Health, eHealth: Umbrella terms to encompass all concepts and activities at the intersection of health and information and communications technologies (ICTs), and encompassing three main functions:
 • the delivery of health information, for health professionals and health consumers,
 • the use of ICTs to improve public health services and
 • the use of health information systems (HIS) to capture, store, manage or transmit information on patient health or health facility activities.

Health System Challenges

<table>
<thead>
<tr>
<th>Category</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>1.1 Lack of population denominator</td>
<td>1.2 Delayed reporting of events</td>
<td>3.1 Poor patient experience</td>
<td>4.1 Lack of alignment with local norms</td>
<td>5.1 Low demand for services</td>
<td>8.1 Insufficient patient engagement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Lack of quality/reliable data</td>
<td>1.4 Communication roadblocks</td>
<td>3.2 Insufficient health worker competence</td>
<td>4.2 Programs which do not address individual beliefs and practices</td>
<td>5.2 Geographic inaccessibility</td>
<td>8.2 Unaware of service entitlement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 Lack of access to information or data</td>
<td>1.6 Insufficient utilization of data and information</td>
<td>3.3 Low quality health commodities</td>
<td>4.3 Low health worker motivation</td>
<td>5.3 Low adherence to treatments</td>
<td>8.3 Absence of community feedback mechanisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7 Lack of unique identifier</td>
<td></td>
<td>3.4 Low health worker motivation</td>
<td>4.4 Insufficient continuity of care</td>
<td>5.4 Loss to follow up</td>
<td>8.4 Lack of transparency in commodity transactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>2.1 Insufficient supply of commodities</td>
<td>2.2 Insufficient supply of services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Insufficient supply of equipment</td>
<td>2.4 Insufficient supply of qualified health workers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality</td>
<td>3.1 Poor patient experience</td>
<td>3.2 Insufficient health worker competence</td>
<td>3.3 Low quality health commodities</td>
<td>3.4 Low health worker motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5 Insufficient continuity of care</td>
<td>3.6 Inadequate supportive supervision</td>
<td>3.7 Poor adherence to guidelines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptability</td>
<td>4.1 Lack of alignment with local norms</td>
<td>4.2 Programs which do not address individual beliefs and practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization</td>
<td>5.1 Low demand for services</td>
<td>5.2 Geographic inaccessibility</td>
<td>5.3 Low adherence to treatments</td>
<td>5.4 Loss to follow up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>6.1 Inadequate workflow management</td>
<td>6.2 Lack of or inappropriate referrals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3 Poor planning and coordination</td>
<td>6.4 Delayed provision of care</td>
<td>6.5 Inadequate access to transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>7.1 High cost of manual processes</td>
<td>7.2 Lack of effective resource allocation</td>
<td>7.3 Client-side expenses</td>
<td>7.4 Lack of coordinated payer mechanisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accountability</td>
<td>8.1 Insufficient patient engagement</td>
<td>8.2 Unaware of service entitlement</td>
<td>8.3 Absence of community feedback mechanisms</td>
<td>8.4 Lack of transparency in commodity transactions</td>
<td>8.5 Poor accountability between the levels of the health sector</td>
<td>8.6 Inadequate understanding of beneficiary populations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.0 Clients

1.1 Targeted Client Communication
- 1.1.1 Transmit health event alerts to specific population group(s)
- 1.1.2 Transmit targeted health information to client based on health status or demographics
- 1.1.3 Transmit targeted alerts and reminders to client(s)
- 1.1.4 Transmit diagnostics result, or availability of result, to clients

1.2 Untargeted Client Communication
- 1.2.1 Transmit untargeted health information to an undefined population
- 1.2.2 Transmit untargeted health event alerts to undefined group

1.3 Client to Client Communication
- 1.3.1 Peer group for clients

1.4 Personal Health Tracking
- 1.4.1 Access by client to own medical records
- 1.4.2 Self monitoring of health or diagnostic data by client
- 1.4.3 Active data capture/documentation by client

1.5 Citizen Based Reporting
- 1.5.1 Reporting of health system feedback by clients
- 1.5.2 Reporting of public health events by client

1.6 On-Demand Information Services to Clients
- 1.6.1 Client look-up of health information

1.7 Client Financial Transactions
- 1.7.1 Transmit or manage out of pocket payments by client
- 1.7.2 Transmit or manage vouchers to client for health services
- 1.7.3 Transmit or manage incentives to clients for health services
2.0 HEALTHCARE PROVIDERS

2.1 CLIENT IDENTIFICATION AND REGISTRATION
- Verify client using identity
- Enlist client for health services/clinical care plan

2.2 CLIENT HEALTH RECORDS
- Longitudinal tracking of client health data and services received
- Manage client structured clinical records
- Manage client unstructured clinical records
- Routine health indicator data collection and management

2.3 HEALTHCARE PROVIDER DECISION SUPPORT
- Provide prompts and alerts based according to protocol
- Provide checklist according to protocol
- Screen clients by risk or other health status

2.4 TELEMEDICINE
- Consultations between remote client and healthcare provider
- Remote monitoring of client health or diagnostic data by provider
- Transmission of medical data to healthcare provider
- Consultations for case management between healthcare providers

2.5 HEALTHCARE PROVIDER COMMUNICATION
- Communication from healthcare provider to supervisor
- Communication and performance feedback to healthcare provider
- Transmit routine and workflow notifications to healthcare provider(s)
- Create group for healthcare providers

2.6 REFERRAL COORDINATION
- Coordinate emergency response and transport
- Manage referrals between points of service within health sector
- Manage referrals between healthcare and other sectors

2.7 HEALTHCARE PROVIDER ACTIVITY PLANNING AND SCHEDULING
- Identify clients in need of services
- Schedule healthcare provider’s activities

2.8 HEALTHCARE PROVIDER TRAINING
- Provide training connected to healthcare providers
- Assess capacity of healthcare provider

2.9 PRESCRIPTION AND MEDICATION MANAGEMENT
- Transmitter track prescription orders
- Track clients’ medication consumption
- Report adverse drug effects

2.10 LABORATORY AND DIAGNOSTICS IMAGING MANAGEMENT
- Transmit diagnostic results to healthcare provider
- Transmit and track diagnostic orders
- Capture diagnostic results from digital devices
- Track biological specimens
Health System Managers

3.1 Human Resource Management
- 3.1.1 List health workforce cadres and related identification information
- 3.1.2 Monitor performance of healthcare provider(s)
- 3.1.3 Manage certification/registration of healthcare provider(s)
- 3.1.4 Record training credentials of healthcare provider(s)

3.2 Supply Chain Management
- 3.2.1 Manage inventory and distribution of health commodities
- 3.2.2 Notify stock levels of health commodities
- 3.2.3 Monitor cold-chain sensitive commodities
- 3.2.4 Register licensed drugs and health commodities
- 3.2.5 Manage procurement of commodities
- 3.2.6 Report counterfeit or substandard drugs by clients

3.3 Public Health Event Notification
- 3.3.1 Notification of public health events from point of diagnosis

3.4 Civil Registration and Vital Statistics
- 3.4.1 Notify birth event
- 3.4.2 Register birth event
- 3.4.3 Certify birth event
- 3.4.4 Notify death event
- 3.4.5 Register death event
- 3.4.6 Certify death event

3.5 Health Financing
- 3.5.1 Register and verify client insurance membership
- 3.5.2 Track insurance billing and claims submission
- 3.5.3 Track and manage insurance reimbursement
- 3.5.4 Transmit routine payroll payment to healthcare provider(s)
- 3.5.5 Transmit or manage incentives to healthcare provider(s)
- 3.5.6 Manage budget and expenditures

3.6 Equipment and Asset Management
- 3.6.1 Monitor status of health equipment
- 3.6.2 Track regulation and licensing of medical equipment

3.7 Facility Management
- 3.7.1 List health facilities and related information
- 3.7.2 Assess health facilities
4.0 Data Services

4.1 Data Collection, Management, and Use

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Non-routine data collection and management</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Data storage and aggregation</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Data synthesis and visualization</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Automated analysis of data to generate new information or predictions on future events</td>
</tr>
</tbody>
</table>

4.2 Data Coding

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Parse unstructured data into structured data</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Merge, de-duplicate, and curate coded datasets or terminologies</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Classify disease codes</td>
</tr>
</tbody>
</table>

4.3 Location Mapping

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Map location of health facilities/structures</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Map location of health events</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Map location of clients and households</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Map location of healthcare provider(s)</td>
</tr>
</tbody>
</table>

4.4 Data Exchange and Interoperability

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1</td>
<td>Data exchange across systems</td>
</tr>
</tbody>
</table>
Principles for Digital Development

- Design With the User
- Understand the Existing Ecosystem
- Design for Scale
- Build for Sustainability
- Be Data Driven
- Use Open Standards, Open Data, Open Source, and Open Innovation
- Reuse and Improve
- Address Privacy & Security
- Be Collaborative

https://digitalprinciples.org/
Adapting and re-using

• GBV e-learning modules from Ghana to Madagascar
• Mentoring app and WhatsApp group from Nigeria to Guatemala
• Adapting cStock in Malawi to include EPI commodities
• Consolidating 3 systems into VIMS in Tanzania
Strengthening the health system

• Governance
 • eLearning secretariat in Ghana
 • eHealth strategy in Tanzania and Namibia
 • Egypt –RR system as well as RR Strategy

• Pillars of Health Information Architecture
 • Master facility list in Namibia
 • Health information mediator in Tanzania

• Learning Legacy
 • Ghana, Zambia, Madagascar, Guatemala, Tanzania
Global Goods

- WHO Digital Health Atlas
MCSP Resources

- Ghana
 - mMentoring in Ghana: Innovative use of technology improves midwifery care
 - eLearning Improves Health Training Institutions in Ghana
 - Skills Labs in Ghana’s Midwifery Schools Improve Confidence of Trainers and Students
- Kenya
 - Use of cellular phone contacts to increase return rates for immunization services in Kenya
- Tanzania
 - Assessing the Effectiveness of a Web-Based Vaccine Information Management System on Immunization-Related Data Functions
- Nigeria HelloMAMA
 - HelloMama Project Brief
 - HelloMama Brief for Engagement with MNOs in Nigeria
 - HelloMama Messaging Service Delivers Vital Health Messages in Nigeria
- MAMA Lessons Learned
 - Executive Summary and Full Report
Maternal and Child Survival Program: Promoting the use of digital tools in Guatemala

Ana Maria Rodas, M&E Advisor / Axel Moscoso, Systems Analyst
MCSP Guatemala
What We Have Done?

1. Designed a **tool to conduct social audits** of health and nutrition services provided by the Ministry of Health in Guatemala

2. Developed a **mobile tool to monitor the enabling environment** of health services prioritized by MCSP

3. Developed an **application to monitor care processes** in Microsoft Access
Tool to conduct social audits of health and nutrition services in public facilities
Approach and definition of support needed by civil society

Validation and mobile application training

Development and implementation of tablets

Presentation of results

February

April

June

August

March

May

July

Tool for Social Audits – Development Timeline

- Approach and definition of support needed by civil society
- Validation and mobile application training
- Development and implementation of tablets
- Presentation of results
- Data migration

- February
- March
- April
- May
- June
- July

- Begin automation process of the monitoring forms
- Begin monitoring of health services
- Presentation of results

- [Icons for tool development and data migration]
Development & Implementation

Mobile App (Android System)

Online dashboard
Creation of six WhatsApp groups:

- Training of young volunteers (50)
- Guidance on installation of mobile tool
- Follow-up of data collection
Felicitaciones por el avance en el monitoreo de la ventana de los mil días a ALIANMISAR y la Red Nacional de Hombres y PDH, importante avance en el uso de sistemas de información!

La subsecretaria técnica de SESAN, Maira Ruano, agradeció el esfuerzo de las organizaciones para llevar a cabo el monitoreo y agregó que Sociedad Civil tiene un espacio en el #SIINSAN para poder publicar los informes del mismo.

http://52.45.240.73/new1000dias/
Monitoreo de la Ventana de los Mil días revela carencias

La pertinencia cultural, infraestructura y abastecimiento de vitamina A y vacunas, son aspectos que deben mejorarse en los servicios de salud.

Por Ana Lucía Ola
21 de Agosto de 2018 a las 20:45h

News publication written by the Prensa Libre following the monitoring results presented at the national level
Samples solicited in 6 health areas:

- 253 facilities (195 health posts, 58 secondary level services)
- 950 interviews and review of health cards with mothers of children under five years of age
- 600 interviews and review of health cards with pregnant and postpartum women
• Samples will be conducted nationally (29 health areas)
• The tool will be administered by the Human Rights Office
• Use by other civil society organizations will be expanded
Thank you!
Adapting the Principles for Digital Development to Provide a Digital Aid for Egypt’s Community Health Worker Cadres, the Raedat Refiat

Mohamed Elghazaly, MCSP Egypt
December 12, 2018
Washington, DC
Outline

• Background
• Adapting the Principles of Digital Development
• Applying the Principles
• Key takeaways
• RR HMIS potential
Background

MoHP Central level
Governorate level
District level
Community level (households)

RR Supervisor
RR
RAR
Adapting the Principles of Digital Development

- Design With the User
- Design for Scale
- Address Privacy & Security
- Be Collaborative
- Build for Sustainability
- Be Data Driven
- Understand the Existing Ecosystem
- Reuse & Improve

Use Open Standards, Open Data, Open Source, and Open Innovation
<table>
<thead>
<tr>
<th>رقم الأسرة</th>
<th>اسم السيدة</th>
<th>رقم القومي</th>
<th>العنوان</th>
<th>رقم المنزل</th>
<th>تاريخ التسجيل</th>
</tr>
</thead>
</table>

بحث عن الأسرة
مثلاً: اسم عضو الأسرة
بحث برقم القومي - السيدة
تحمي عضو
إلغاء عضو
أضافة عضو
عرض بيانات الأسرة
أضافة بيانات الأسرة
تحديث بيانات الأسرة
إلغاء أسرة جديدة
| التاريخ / الاسم | اليوم | الاسم | الاحدث | الاثنين | اسم يتعارض مع عدد الهواتف في الصفحة.
Adapting the Principles of Digital Development

- Trainers/facilitators
- Application
- Participants
- Feedback
- Improvements
Key Takeaways

• Involvement of the Ministry of Health is critical to promote ownership and sustainability

• Consult with end users and stakeholders on the design

• RR HMIS must be flexible to adapt as the context changes
RR HMIS Potential

• Public health event notification

• Platform for information sharing across sectors

• M&E tool
Implementing Interoperability Layer to Support Information Exchange: Experience from Tanzania Health Sector

Fidelis Ronjino – ICT Officer (MOHCDGEC)
Edwin Nyella – Health Information Systems Advisor (JSI/MCSP)
Nsaghurwe Alpha – Senior Health Information Systems Advisor (JSI/MCSP)
Background

- Fragmented ICT pilots and numerous HIS silos
- Inadequate sharing/exchange of information across the sector
- Fragmented and uncoordinated business processes
- No common investment framework
- Emphasis on governance and partner coordination
- Need for a holistic approach
GoT HIE Commitment

Health Sector Strategic Plan 2015 – 2020
- Stimulate use of digital solutions & guide interoperability of systems

Tanzania eHealth Strategy 2013 – 2018
- Establish standards, rules, and protocols to facilitate information exchange

Establishment of eHealth Governance Structure
- National eHealth Steering Committee
Tanzania Health Information System Integration Evolution

Ad Hoc
- Multiplicity of systems (128+)
- Business/program specific system silos
- No standards with redundancies and gaps
- Limited scale and no governance

Organized
- Some nationally scaled systems (DHIS2, eLMIS, VIMS, HRHIS, HFR etc)
- Limited peer-to-peer interoperability
- Key architectural gaps
- Limited governance (system specific)

Integrated
- Enterprise Architecture (13+ Systems)
- Common standards and guidelines
- Formal governance (eHealth SC)
- Linked with other eGov systems (Muungano Gateway)
Phase 01 Use Cases (11 Systems are Integrated)

- **Use Case #01: Client level data exchange for hospitals**
 a. Tracking medical services received
 b. Tracking deaths by disease case
 c. Tracking bed occupancy rate
 d. Tracking hospital revenue

- **Use Case #02: Aggregate data exchange to DHIS2 through HIM**
 a. eLMIS: Count of stock received, consumed, and stock on hand at facility level
 b. Immunization data (VIMS): Monthly counts of children vaccinated
 c. E9: Count of stock received, consumed (distributed), and SOH at MSD
 d. HRHIS: Number of HCW for each cadre (MDs, Nurses, etc) by gender and employer

- **Use Case #03: Health Facility Registry Data Extract**
 a. HFR: Post facility information to DHIS2 through HIM
 b. HFR: Post facility information to VIMS through HIM
Support Multiple Transport Methods, Data Formats & Code Sets

• **Multiple data transport methods**
 - File uploads/downloads (Web Interface)
 - Web APIs
 - sFTP
 - FHIR

• **Multiple data formats**
 - Custom, HL7, XML, JSON, txt, xls, and csv

• **Multiple code sets**
 - Custom, ICD 9 & 10, CPT4, SNOMED, and LOINC
Future Uses of the System

• Increase the ability to triangulate and compare data across domains/tiers/functions

• Enhance the premise of collecting data once and using it multiple times

• Facilitate continuity of care across programs/facilities/health needs

• Support e-Referral from community to facility and lower to...
Applying GIS Technology to Strengthen Routine Immunization (RI) Planning in Nigeria

MCSP Digital Health Meeting
December 12, 2018
Leanne Dougherty, Masduq Abdulkarim, Fiyidi Mikailu

Photo: Karen Kasmauski/MCSP
Current challenges with RI in Nigeria due to poor data quality

- Poor planning
- Inefficient/inequitable resource allocation
- Old data used to estimate target populations
- Imprecise monitoring based on inaccurate source data

This leads to poorly informed decision making.
How can Nigerian states use GIS to produce more accurate PHC health facility catchment area maps and population estimates?

1) What processes are required to generate PHC maps using GIS?
2) What are end user perceptions of map accuracy and usability?
3) How do population estimates and settlement vaccination strategy assignments differ between hand drawn and GIS maps?
What data are needed to produce health facility maps for RI microplanning?

1. Names of health facilities
2. Names and locations of settlements in the catchment area
3. Target populations for the settlements
4. Landmarks (rivers, hills, markets, churches, schools, boreholes, etc.)
5. Distances from the settlements to the health facilities

What steps are needed to produce GIS maps for RI microplanning?

Step 1: Information gathering—dataset identification, field data collection, and reconciliation

Step 2: Geospatial data processing and analysis

Step 3: Map production and validation
Step 1: Information gathering – dataset identification, field data collection, and reconciliation

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHC facilities</td>
<td>Government lists of facilities offering RI</td>
</tr>
<tr>
<td>Settlements</td>
<td>Identified and captured using remote sensing techniques and high-resolution satellite imagery. Named through field data collection. Stored in the Vaccination Tracking System (VTS).</td>
</tr>
<tr>
<td>Population</td>
<td>Estimates for children < 5 years and 0-1 year are available through VTS</td>
</tr>
<tr>
<td>Points of interest</td>
<td>Office of the Surveyor-General of the Federation (OSGOF)</td>
</tr>
<tr>
<td>Roads, railways,</td>
<td>Open Street Map (OSM)</td>
</tr>
<tr>
<td>waterways, water bodies</td>
<td>Global database of administrative areas (GADM) and OSGOF-provided information on administrative boundaries at state and local government area (LGA) level</td>
</tr>
</tbody>
</table>
Step 2: Geospatial data processing and analysis

Geoprocessing Stages to Develop PHC Catchment Area Maps

Stage 1: PHC catchment settlement points
Stage 2: Convex hull output-not smoothed
Stage 3: Convex hull output-smoothed

Current RI Boundary
Criteria:

- < 2 km: Facility-Based Services
- 2-5 km: Outreach
- > 5 km: Mobile Sessions
Step 3: Map production and validation

Hand drawn map (below) and GIS map (right) of Miri primary health facility catchment area in Bauchi, Nigeria
Implementation Experience

Users found the electronic maps that reflected their current understanding of the health facility catchment area easy to use.

“When you look at maps, you think about things differently. You think about a settlement alone and the type of strategy you need. The visual depiction means something. [The settlement] is alone, far from the facility….”

- Participant from Sokoto State

Lessons learned:

- Map **iconography** should be culturally relevant
- People used to reading hand-drawn maps need time to learn how to “read” GIS maps
- Lack of a **Master Facility List** with unique identifiers limits the potential of this tool

Photo: Karen Kasmauski/MCSP
Conclusions & Recommendations

Using satellite imagery to generate more accurate population estimates and settlement listings can enable an RI program to **overcome the limitations of outdated census data**, extend its **reach**, improve geographical **equity**, maximize **efficiencies** and improve **accountability**.

Open data sources for GIS data are becoming more widely available and can be an option for increasing the use of spatial analysis for health planning.

Establishing a **list of health facilities** providing services with a unique identifier can ensure more accurate source data and robustness of the health system.

Putting GIS tools in the hands of health workers and decision makers **works** and leads to **new norms for planning**, increased **access** to RI services, and better **outcomes**.
Cross Rivers State Experience Implementing and Sustaining Digital Health Initiatives: HelloMama Case Study (2016-2018)
Presentation Outline

• State background
• HelloMama initiative and implementation model
• Value from HelloMama
• What we achieved from using HelloMama
• What we are doing differently
• What we learnt
Cross River State is one of the south-southern states situated within the Cross River Basin. The Atlantic Ocean is to the south and it shares a border with the Republic of Cameroon. The State has 18 LGAs and its capital is Calabar. The 2015 projected population of Cross River State was 3,783,085 million persons (UNFPA).
HelloMama Initiative

HelloMama is an initiative that aims to improve Maternal, Newborn and Child Health (MNCH) behaviors and health outcomes in Nigeria through age and stage based messages to pregnant women, mothers and household decision makers.

With funding support from USAID, MCSP and pathfinder SMGL worked with the State Ministry of Health at all levels, from the Commissioner for Health down to the heath care workers.

Starting in Oct. 2016, the project was piloted in 20 health facilities across 8 LGA. It has been expanded to an additional 50 facilities across the 18 LGA.
What Is the Value of HelloMama?

• Health workers utilization – much enthusiasm from HW, improved and reported better HW and client relationships (clients now come with increased knowledge)
• Increased enrollment of pregnant women in the second trimester (third trimester was the norm) with marginal first trimester enrollment and retention in ANC
• 100% life births amongst women receiving HelloMama messages
• Enrolled HelloMama beneficiaries reporting improved behaviors and practices towards their health
• Women are encouraging others to visit health facilities (the excitement and appreciation of these women was palpable)
How did We Scale Up and Maintain Sustainability?

- The collaborative and partnership approaches with stakeholders made it easy for states to be willing to adopt and sustain.

- HelloMama started the transition and scalability discussions with the state in 2017, with intentions to scale up to an additional 20,000 women (by integrating it into the state SOML work plan).

- Monthly engagements with the Ministry, SPHCDA and health workers enabled leadership to witness first hand the pulse of the project and the excitement it generated amongst the HW and end users.

- There was mutual understanding and appreciation on how the state systems work, with both parties exploring strategy, resulting in the state executive buy-in.
What Are We Doing Differently

• Ensured that sustaining and deploying digital health was approved at the State Maiden Council of Health in September 2018

• Promote digital health through the development of the state e-health strategic plan for 2018 -2022 (fulcrum for resource allocation and coordination). Cross River State became the first state in Nigeria to domesticate the national e-health policy and strategic framework

• Political leadership of the state is updated with upgraded content and scope

• The state stated that the cost of the technology was too expensive and unsustainable, we engaged an ICT developer to re-engineer the platform and integrate new content - to be launched in January
What Have We Learnt Together!!!

• Partnerships with mutual respect and interest can achieve much

• The digital health landscape in Nigeria is still largely uncharted and requires patience, agility and resilience (donors need to have this understanding)

• Working with government requires perseverance and political sagacity to navigate the terrain (we must learn what moves the politicians and how to deploy for health benefits)

• Cross Rivers State MOH still requires partners support to entrench digital health
“I am a mother of 3 children, with little information on pregnancy care. Due to HelloMama, I now know more on cord care, importance of facility birth, nutrition and hygiene. What stood out for me the most was the message describing the signs of labor; I was experiencing these signs the same time I got the message, which made me feel very secure. Secondly, the day after I had my baby I got another SMS congratulating me on my new baby and informing to go to the hospital to ensure I and my baby are doing fine.”

Gift Uche, Holy Family Hospital, Ikom Cross River State

“During my last pregnancy, I took a native medicine that made me very ill all through the nine months. When I got pregnant again, I registered in the hospital for HelloMama messages. I got some messages telling me the types of food I should eat and a call saying I should only use the drugs from my nurse. I have been following these instructions and see, I am doing very fine.”

Augustine, Lutheran Hospital Yahe, Cross River State
mPowering Frontline Health Workers
and
Uganda Implementation of Open Deliver

December 12, 2018

Allen Nsangi, Makerere University College of Health Sciences
Alice Liu, Director of mPowering
ORB
Open source library of vetted, free, digital training resources for health workers

http://health-orb.org/

Open Deliver
Flexible, open source digital training system that helps countries build and deliver national level health worker training and enhances supervision and mentorship
Current Situation

- **Insufficient Training:** 66% of CHEWs have basic training (trained for a total between 1-7 days). Remaining **34% do not have any basic training at all** (but are still working as CHEWs).
- **Literacy:** About 50% of all CHEWS completed Junior High School. In remote areas only about 20%.
- **Lack of coordination, constant duplication, inequitable access and no ownership.**
Strategy: Standardize Training for 15,000 CHEWS Over 5 years

How? Blended Approach (classroom + mobile) using Open Deliver Technology

Guiding Principles:

• Government Owned
• Contextualized content
• Multi-Stakeholder Approach
Project Pilot Sites

Ntungamo District
Rubaare Health Centre IV

Kumi District
Kumi Hospital

Lyangonde District
Lyangonde Hospital
Sample Module Emergency Medicine Care Course

Upon completion of this module you should be able to:

1. Identify the key considerations for Safety
2. Understand the ABCDE approach
3. Assess and manage the Airway
4. Assess and manage Breathing
5. Assess and manage Circulation
6. Assess Disability
7. Expose
8. SAMPLE history
9. Secondary Assessment
10. Handover

- The ABCDE’s should be completed within the first 5 minutes on patient contact
- They should be repeated anytime the patient’s condition changes
Cost Model Estimates Uganda

- **15.57% projected savings on Overall Training Program**
- **40% projected savings on Training and Supply Costs**
- Cost assumptions for both classroom and blended training are starting points for the use of the model.
- Baseline costs based on estimates from CHEW MoH training program
- Estimates will be modified with *real* costing data as the program wraps up.
- Long term goal – a dynamic cost model incorporating actual costs + benefits -> CBA, CEA, CUA
Next Steps

- Setting up a Regional Center of Excellence or Academy Hub at Makerere University.
- Using Open Deliver as the Central Coordinating Technology for Digital Health Education in East Africa.
Thank you all, Mwebale nnyo

For more information, please visit
www.mcsprogram.org

This presentation was made possible by the generous support of the American people through the United States Agency for International Development (USAID), under the terms of the Cooperative Agreement AID-OAA-A-14-00028. The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government.